On the Existence and Regularity of Hypersurfaces of Prescribed Gauss Curvature with Boundary
نویسنده
چکیده
In this paper we study the Dirichlet problem for some Monge-Ampère type equations on S, which naturally arise in some geometric problems. The result then is applied to prove the existence of hypersurfaces in R of prescribed Gauss-Kronecker curvature and with fixed boundary.
منابع مشابه
The Dirichlet Problem for Monge-ampère Equations in Non-convex Domains and Spacelike Hypersurfaces of Constant Gauss Curvature
In this paper we extend the well known results on the existence and regularity of solutions of the Dirichlet problem for Monge-Ampère equations in a strictly convex domain to an arbitrary smooth bounded domain in Rn as well as in a general Riemannian manifold. We prove for the nondegenerate case that a sufficient (and necessary) condition for the classical solvability is the existence of a subs...
متن کاملThe Monge-Ampère equation and its geometric applications
In this paper we present the basic theory of the Monge-Ampère equation together with a selection of geometric applications, mainly to affine geometry. First we introduce the Monge-Ampère measure and the resultant notion of generalized solution of Aleksandrov. Then we discuss a priori estimates and regularity, followed by the existence and uniqueness of solutions to various boundary value proble...
متن کاملHypersurfaces of Prescribed Gauss Curvature in Exterior Domains
We prove an existence theorem for convex hypersurfaces of prescribed Gauß curvature in the complement of a compact set in Euclidean space which are close to a cone.
متن کاملExistence of Convex Hypersurfaces with Prescribed Gauss-kronecker Curvature
Let f(x) be a given positive function in Rn+1. In this paper we consider the existence of convex, closed hypersurfaces X so that its GaussKronecker curvature at x ∈ X is equal to f(x). This problem has variational structure and the existence of stable solutions has been discussed by Tso (J. Diff. Geom. 34 (1991), 389–410). Using the Mountain Pass Lemma and the Gauss curvature flow we prove the ...
متن کاملSpacelike hypersurfaces with constant $S$ or $K$ in de Sitter space or anti-de Sitter space
Let $M^n$ be an $n(ngeq 3)$-dimensional complete connected and oriented spacelike hypersurface in a de Sitter space or an anti-de Sitter space, $S$ and $K$ be the squared norm of the second fundamental form and Gauss-Kronecker curvature of $M^n$. If $S$ or $K$ is constant, nonzero and $M^n$ has two distinct principal curvatures one of which is simple, we obtain some charact...
متن کامل